ULMOPRENOL, A NEW TYPE C₃₀-POLYPRENOID FROM EUCOMMIA ULMOIDES, OLIVER

Zen-ichi Horii, Yutaka Ozaki, Keishiro Nagao, and Sang-Won Kim* Faculty of Pharmaceutical Sciences, Josai University Keyakidai, Sakado, Saitama 350-02, Japan

Various polyprenoids have been characterized from mammalians, insects, plants, and fungi¹⁾. Most of them have the same α -terminal as shown in I and some of them have ambiguity as to the precise configuration of the olefinic bonds^{1a)}. In this communication, we wish to describe the isolation and structure elucidation of ulmoprenol(II), a new C₃₀-polyprenoid with a novel α -terminal, from Eucommia ulmoides Oliver (Tu-Chung), that is one of the oldest tonic herbs in China²⁾.

Ulmoprenol(II), bp.180-185°/5×10⁻⁵Torr, $[\alpha]_D^{20}$ =-15°, was isolated from an ethanol extract of Tu-Chung bark by means of combination of column and preparative thin layer chromatography³⁾. The structure II is here presented for this compound on the basis of the following spectral and chemical evidences.

The molecular formula of II $(C_{30}H_{50}O)$ was supported by elemental analysis and MS (M⁺ 426.3889, calcd 426.3859). The IR spectrum of II showed absorptions at 3350 and 1030(OH), 1645 and 895(C=CH₂), and 1670 and 830(C=C) cm⁻¹. Its mass spectrum showed successive peaks of two series at m/e 408(M⁺-H₂O), 339, 271, 203, 135 and 357, 289, 221, 153, and base peak at 69 characteristic of those of polyprenoids^{1b,C)}. The PMR spectrum of II exhibited signals at δ 3.55(2H,d,J=6Hz,CH-CH₂OH), 1.60(15H,s) and 1.68(6H,s) due to allylic methyl, 2.00-2.07(19H,protons of allylic methylene and methine), 4.68 and 4.95(each 1H, broad s,C=CH₂), and 5.12(5H,broad,C=CH-). The CMR spectra of II showed the presence of a methine at 48.9(d), a methylene bearing oxygen at 64.1(t), and an olefinic methylene at

5015

111.1(t) ppm.

From these findings, it can be said that II is a polyprenol composed of six isoprene units and that the signal at $\delta 1.60$ are assignable to a methyl group of the ω -terminal and four methyl groups of the internal trans isoprene residue⁴⁾, and the signal at $\delta 1.68$ to a methyl group of the ω -terminal and a methyl group on the olefin in the α -terminal moiety.

The acetate(III, M⁺468.3984), obtained by acetylation of II with Ac_2O pyridine, was ozonized[-30°, 30 min in AcOEt/MeOH(4:1)] followed by oxidative workup(H_2O_2 -HCOOH) to yield levulinic acid(IV) and β -acetylbutyrolactone(V) [IR;1770, 1715cm⁻¹, PMR; δ 2.70(3H,s,COCH₃), 2.79(2H,d,J=8Hz,-CH₂CO-), 3.62(1H,q, J=7Hz,8Hz,-OCH₂CH \leq), 4.48(2H,d,J=7Hz,-OCH₂CH \leq)] and no succinic acid was characterized, revealing the non-squalene nature of the molecule.

As a result, it is clear that the α -terminal of II has an isopropenyl and a hydroxymethyl group on a methine⁵⁾, and all of the trans isoprene units linked in a "head-to-tail" manner.

<u>Acknowledgement</u> is made to Professor Y. Morita of this faculty for his helpful discussion.

References and Footnotes

- a) T.K.Devon and A.I.Scott, "Handbook of naturally occurring compounds" Vol.II,P.499, Academic Press 1972. b) A.R.Wellburn, J.Stevenson, F.W. Hemming, and R.A.Morton, Biochem.J.,<u>102</u>,313(1967). c) K.J.Stone, A.R. Wellburn, F.W.Hemming, and J.F.Pennock, ibid.,<u>102</u>,325(1967). d) P.J. Dunphy, J.D.Kerr, J.F.Pennock, and K.J.Whittle, Biochem.Biophy.Acta,<u>136</u>, 136(1967). e) J.Feeney and F.W.Hemming, Anal. Biochem.,<u>20</u>,1(1967).
 f) S.Nozoe, M.Morisaki, K.Fukushima, and S.Okuda, Tetrahedron Lett.,4457 (1968). g) T.Suga, T.Shishibori, S.Kosela, Y.Tanaka, and M.Ito, Chemistry Lett.,771(1975).
- Pinoresinol diglucoside was reported as an antihypertensive principle of Tu-Chung. C.J.Sih, P.R.Ravikumar, F.Huang, C.Bucker, and H.Whitlock, Jr., J.Am.Chem.Soc., 98, 5412 (1976).
- Squalene, sitosterol, β-amyrin, sitosterol-D-glucoside, dulcitol, and some fatty acids were also isolated and identified with authentic specimens.
- 4) R.B.Bates and D.M.Gale, J.Am.Chem.Soc., 82, 5749 (1960).
- Lavandulol, a monoterpene alcohol, has the same structure as to the α-terminal. H.Schinz and C.F.Seidel, Helv.Chim.Acta, 25, 1572(1942).

(Received in Japan 16 September 1978)